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Rich Features Embedding for Cross-Modal Retrieval:
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Abstract—During the past few years, significant progress
has been made on cross-modal retrieval, benefiting from the
development of deep neural networks. Meanwhile, the overall
frameworks are becoming more and more complex, making the
training as well as the analysis more difficult. In this paper, we
provide a Rich Features Embedding (RFE) approach to tackle
the cross-modal retrieval tasks in a simple yet effective way.
RFE proposes to construct rich representations for both images
and texts, which is further leveraged to learn the rich features
embedding in the common space according to a simple hard
triplet loss. Without any bells and whistles in constructing complex
components, the proposed RFE is concise and easy to implement.
More importantly, our RFE obtains the state-of-the-art results on
several popular benchmarks such as MS COCO and Flickr 30 K.
In particular, the image-to-text and text-to-image retrieval achieve
76.1% and 61.1% (R@1) on MS COCO, which outperform others
more than 3.4 % and 2.3 %, respectively. We hope our RFE will serve
as a solid baseline and help ease future research in cross-modal
retrieval.

Index Terms—Rich features embedding, image-text matching,
deep representation learning, cross-modal retrieval.

I. INTRODUCTION

ITH the rapid development of information technology,
multimedia data such as image, text, video and au-
dio has been widely available on the Internet and contribute
the dominant forms of the data. Usually, the data with differ-
ent modalities are leveraged collectively to describe the same
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object or event. Therefore, it is of great significance to mine the
semantic consistency of multimedia data. In this work, we focus
mainly on image-sentence cross-modal retrieval task, which is
to find the best matching sentence (image) from the database for
a given image (sentence). Owing to semantic gap of multi-modal
data, the heterogeneous characteristic has been widely consid-
ered as a main challenge for cross-modal retrieval. The pop-
ular way for bridging the heterogeneous gap is to learn fea-
tures embedding. Recently, some feature-enhancement based
approaches [1]-[7] propose to learn features embedding for
capturing the common characteristics of isomerous data. These
methods usually adhibit sophisticated network to strengthen text
or image representation when learning features embedding. For
instance, Yue ef al. [8] construct independent semantic spaces
by a modality-specific cross-modal similarity measurement ap-
proach for different modalities. Zheng et al. [3] creatively build
a convolutional network amenable for fine-tuning the visual and
textual representation. Huang et al. [4] propose anovel semantic-
enhanced image and sentence matching model, which can im-
prove the image representation by learning semantic concepts
and then organizing them in a correct semantic order. Gu et al. [5]
propose to incorporate generative processes into the cross-modal
feature embedding for the first time. Peng et al. [6] propose an
effective cross-modal correlation learning approach with multi-
grained fusion by hierarchical network. Although these meth-
ods significantly bridge the heterogeneous gap among different
modalities and achieve impressive performance, they make the
network more and more complex. For these complex networks,
they are not only hard to train but also difficult to identify which
modules are really work well. Therefore, our objective is to ex-
ploit simple yet effective way to learn features embedding.
This work is motivated by [9], which makes the first attempt
to use convolutional neural network (CNN) features for con-
ducting cross-modal retrieval. Specifically, Wei et al. [9] have
revealed that the performance of cross-modal retrieval will be
significantly improved as long as the distinguished representa-
tion is learned. They achieve superior results compared with
traditional visual features despite barely exploiting off-the-shelf
CNN visual features without complex network model. Inspired
by [9], we make an assumption: accurate retrieval results may be
achieved by simply constructing more powerful feature repre-
sentations for different modality data. Accordingly, we propose
a RFE approach to learn discriminative representation for im-
age and text in common space, as shown in Fig. 1. As for RFE,
we target to learn rich features embedding by merging high-level
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Fig. 1. The motivation of RFE. We aim to learn rich features embedding by
merging high-level representation with low-level information to obtain com-
plementary feature representation with employing pooling operation on feature
maps. The green and yellow indicate the learned features embedding for images
and texts, respectively.

representation with low-level information to obtain complemen-
tary feature representation.

It is a common knowledge that different layers carry different
information in deep neural network (DNN). For example, we
can obtain representation from local feature to semantic feature
with the increase of the number of the layers. Only exploiting
high-level semantic information will lose details of the low-level
local information, which is an important cue for cross-modal
retrieval. Therefore, we consider exploiting both high-level se-
mantic information and low-level local details rather than only
making use of global information of the last layer. Firstly, local
and global features are integrated from sentences and images
to obtain isomorphic semantic representation. Then, these pair-
wise representations will be embedded to a shared space in order
to compute similarity of heterogeneous data. Finally, we con-
sider a metric to minimize the gap between semantically similar
items from different modalities while maximizing the distance
between semantically different items of the same modality.

Our RFE includes three key modules: 1) construct rich fea-
tures for images; 2) construct rich features for texts; 3) one hard
triplet loss for optimization. Concretely, we handle max-pooling
on the feature maps of Resnet-C1, Resnet-C2, Resnet-C3, and
Resnet-C4 to get the local feature. In order to obtain global se-
mantic feature, we use average-pooling on Resnet-C4 that is
the final layer of Resnet. We first concatenate the local fea-
ture and global feature as the feature representation of the im-
age. For text encoder pipeline, we then represent the word by
word-embedding. Finally, we learn the temporal context infor-
mation by averaging the forward final hidden state and backward
final hidden state, which is called global feature. Since the fea-
ture after word-embedding is the low-level word representation,
we handle average pooling on word-embedding feature as the
local feature of the text. Same as image representation, we com-
bine local and global features to obtain text representation. To
bridge the semantic gap between different modal data, we map
the two representations into two intermediate spaces that have
a natural correspondence. We employ triplet loss to make the
paired data as close as possible while the unpaired data as far
as possible. Different from other methods [10]-[14], we focus
solely on the hardest negative in a mini-batch.

To sum up, our main contributions are three-fold:
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® We propose a simple yet effective approach that high-level
semantic information and low-level local details are inte-
grated for discriminative image representation.

® We propose a new approach to encoder text by exploiting
not only word-level local representation but also sentence-
level context global feature.

® Ourwork achieves 76.1%/61.1% R @1 accuracy for image-
to-text retrieval and 72.2%/53.3% R@1 accuracy text-to-
image retrieval in the popular MS COCO and Flickr30 K
retrieval datasets, which are the new state-of-the-arts.

II. RELATED WORK
A. CCA-Based Methods

As a popular baseline for common space learning, canonical
correlation analysis (CCA) [15] is usually employed to find a
pair of mapping matrices to maximize the correlation between
two kinds of feature representations. Sharma et al. [16] pro-
pose a generic framework, called generalized multi-view anal-
ysis, to map feature representation in different modality spaces
into an isomorphic nonlinear space. Gong et al. [17] present a
three-view CCA method by introducing a semantic view to pro-
duce abetter separation for multi-modal data belonging to differ-
ent categories in the learned common space. Moreover, Andrew
et al. introduce a Deep CCA (DCCA) [18] to learn complex non-
linear transformations for two associated views. Zhang et al. [10]
develope a general framework to project cross-view data into
a unique high-level low-dimensional semantically shared sub-
space to mine the semantically consistent patterns for cross-view
data. Eisenschtat et al. [19] employ the Euclidean loss and a tied
2-way architecture to link paired samples from two sources.

B. Ranking-Based Methods

In recent years, training with a ranking loss is one of the
most effective methods for cross-modal retrieval. In general,
these methods are supervised but do not enforce the assumption
that the trained multi-modal data must be paired as needed for
CCA-based models (e.g., one image is in pair-correspondence
with one text description). Specifically, Yang ef al. [20] propose
a semi-supervised algorithm called ranking with local regres-
sion and global alignment to learn a robust Laplacian matrix for
multi-modal data ranking. Inspired by the use of hard negatives
in structured prediction and ranking loss functions used in re-
trieval, Faghri er al. [21] present a new technique for learning
visual-semantic embedding for cross-modal retrieval tasks. Nam
et al. [2] propose dual attention networks which jointly leverage
visual and textual attention mechanisms to capture fine-grained
interplay between vision and language. Huang et al. [22] pro-
pose a multi-modal context-modulated attention scheme to se-
lect salient pairwise instances from image and sentence, and a
multi-modal long short-term memory (LSTM) network for local
similarity measurement and aggregation. Wehrmann et al. [23]
introduce an efficient character-level inception module which
is designed for learning textual semantic embeddings by con-
volving raw characters in distinct granularity levels. Lee ef al.
[24] present stacked cross attention to discover the full latent
alignments using both image regions and words in sentence as
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context and infer the image-text similarity, which exploits addi-
tional data visual genomes to train bottom-up attention model.

C. Hashing Based Methods

With the explosive growth of high-dimensional cross-modal
data, the problem of nearest neighbor search becomes more ex-
pensive than ever before. To address this problem, hashing-based
approaches for large scale similarity search have attracted con-
siderable interest in the cross-modal retrieval community. Ding
etal. [25] propose a similarity-preserving based hashing method
named collective matrix factorization hashing for cross-view
similarity search on multimodal data. Lin et al. [26] propose a
supervised semantics-preserving hashing method for cross-view
retrieval. Jiang et al. [27] presented a deep cross-modal hash-
ing method, which is an end-to-end deep learning framework
that can perform feature learning and hash-code learning simul-
taneously. Li ef al. [28] propose a novel ranking-based hash-
ing framework that maps data from different modalities into a
common Hamming space where the cross-modal similarity can
be measured using Hamming distance. Liu et al. [29] propose
a new cross-media hashing scheme to treat the propose cate-
gories as the third view and preserve the correlation between
heterogeneous instances and categories as well. Xu et al. [30]
propose a novel discrete cross-modal hashing method to learns
discriminative binary codes by retaining the discrete constraints.
Li et al. [31] propose a self-supervised adversarial hashing ap-
proach, which lies among the early attempts to incorporate ad-
versarial learning into cross-modal hashing in a self-supervised
fashion. Hu et al. [32] propose to process heterogeneous data
by making use of using modalitys-pecific models. Zhang et al.
[33] raise anovel approach called HashGAN for the cross-modal
hashing based on the idea of adversarial architecture.

D. Classification-Based Methods

Learning the similarity between images and texts could be
also modeled as classification. Ba ef al. [34] train a two branch
network using classification loss to match visual and text data for
zero-shot learning. Wei et al. [35] propose a modality-dependent
cross-media retrieval (MDCR) model, where two couples of pro-
jections are learned for different cross-media retrieval tasks in-
stead of one couple of projections. Rohrbach er al. [36] use a
softmax function to estimate the posterior probability of a phrase
over all the available region proposals in an image. Fukui et al.
[37] systematically investigate multiple feature fusion strategies
and find element-wise product to be among the most effective.
Wei et al. [9] propose a deep semantic matching method to ad-
dress the cross-modal retrieval problem with respect to samples
which are annotated with one or multiple labels. Liu et al. [38]
propose a deep framework introducing a latent embedding layer
to learn joint parameters. Zheng ef al. [3] propose a dual-path
CNN which learns discriminative feature embedding from train-
ing image/text pairs. Jabri et al. [39] use a softmax function
to predict whether the input image and question match with
the answer choice for visual question answering (VQA). Wang
et al. [12] propose adversarial cross-modal retrieval method to
learn representation which is both discriminative and modal-
ity invariant for cross-modal retrieval. Wang et al. [40] propose
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a joint global and co-attentive representation learning method
for image-sentence retrieval. Yang et al. [41] a hierarchical
multi-clue fusion approach to predict the popularity of point
of interest (POI) for cross-modal data. Peng et al. [42] construct
independent semantic spaces by a modality-specific crossmodal
similarity measurement approach for different modalities.

III. RiCH FEATURES EMBEDDING

We show the overall architecture of the rich features embed-
ding approach in Fig. 2. It consists of three components, i.e. Rich
Image Representation (RIR), Rich Text Representation (RTR)
and hard triplet loss for cross-modal retrieval. Deep image net
and deep text net are utilized to extract isomorphic semantic
representations for images and texts, respectively. Triplet loss
is bidirectional max-margin ranking loss adopted for image-text
similarity learning. The overall framework is trained by min-
imizing the following composite loss functions from the two
branches using stochastic gradient descent:

LbiTri = Limg + Lsent (1)

The RFE will be elaborated on details in the following
components.

A. Rich Image Representation

To enhance image representation, we propose the RIR ap-
proach to fuse high-level global information and low-level local
information. The popular image representation methods [3]—[5],
[21] only use global average pooling to extract the last layer
convolution feature that is semantic feature ignoring the local
information of image. As shown in Fig. 2, we try to develop not
only semantic feature from the last convolution layer but also lo-
cal information of each layer. Therefore, it is very important and
urgent to know how to develop partial information when given a
convolution. In this paper, we employ the simple method that is
max-pooling operation universally acknowledged as digging up
local information of image. For details, we handle max-pooling
on Resnet-C1, Resnet-C2, Resnet-C3 and Resnet-C4 to get the
local feature vector. Then, we concatenate all local feature vec-
tors and semantic feature vector as image feature. The image
feature ., of DIRP approach can be formulated as:

Ifeq = Normpa[Poolna (C1), Poolm. (C2),

P00lmax (C'3), Poolnax (C4), Pooly,q(C4)]  (2)

where P00l and Pool,,, denote max pooling and average
pooling, respectively. C'l, C2, C'3 and C4 denote Resnet-C1,
Resnet-C2, Resnet-C3 and Resnet-C4, and Normps denotes
L2 normalization. [:, :] denotes concatenation.

B. Rich Text Representation

To exploit discriminative text representation, we propose RTR
approach to make full use of both global temporal context fea-
ture and local word-embedding feature, which is shown in Fig. 2.
Different from previous methods [4], [5], [21], [43], we explore
to mine not only low-level but also high level clues for text
representation by exploiting both word-embeddings and bidi-
rectional gated recurrent unit (biGRU) information. Concretely,
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Overview of the proposed RFE approach for cross-modal retrieval. For deep image net, we concatenate the local feature by max-pooling from Resnet-C1

to Resnet-C4 and global feature by average-pooling the Resnet-C4 as the feature representation of the image. With regard to deep text net, we first represent the
word by word-embedding. Then, we learn the global temporal context information by BiGRU. Similar to image representation, we hand average pooling on word
embedding feature as the local feature. Finally, we fuse the local feature and global feature to obtain text representation. Based on image and text representation,
we exploit hard triplet loss to make the paired data as close as possible and the unpaired data as far as possible.

given sentence s; where ¢ is the index word in sentence, we use
a BiGRU to encode the context for each word. Firstly, we embed
each word s, into a feature vector E'mb; using word embedding.
Then, a layer BiGRU is exploited to encode the sentence after
embedding all words. Next, we sum the final hidden represen-
tation of each direction in BiGRU for global text representation
and handle average pooling on word embedding matrix Emb
to obtain local text representation. Finally, L2-normalization is
used after the concatenation of global feature and local feature
to obtain final text representation T'feq:

Emb, = Embedding(s;) 3)
E)t = GRE;I (Embt, ﬁtfl) (4)
. = GRU(Embe, B 1) 5)

Tfea = [Norng(ﬁt + %t), Normpz(Poolgyg(Emb))]
6)

— —

where h ; and h ; denote forward and backward context feature
of tth word in sentence, respectively. GRi? denotes forward
GRU while G RU denotes backward GRU.

C. Hard Triplet Loss

After encoding image and text, we employ triplet loss func-
tion to measure the similarity between sentences and images,
which is motivated by VSE++ [21]. The overview of the triplet
loss is demonstrated in Fig. 3. Different from vanilla triplet loss,
we only choose the hardest negative sample for each anchor
within each mini-batch at each iteration, which is potentially

Positive sample
~ Positive sample

Anchor Metric

_—
learning

Anchor

Hardest Negtive samples

‘ Negtive samples
negative sample

Fig.3. Overview of the triplet loss. The hardest negative sample is the sample
that is the closest to anchor. By minimizing the triplet loss, the distance between
anchor and positive sample in the learned embedding space becomes smaller
than distance between anchor and negative samples.

more robust to label errors [21]. We take the image and text
as anchor to get the following two sets of triplet loss Liy,g
and Lgeny:

Limg = Z max (mg — dist (féé} (I}”m), fIEI?T) (Tyea))
I Tfea
. ), v T oz
+dl$t< I(/VI) (Ifea)7 lEVT)‘ (Tfea)>) (7)
L= > maz (mg = dist (5 (T0). £ (11..))
TFeal fea
. T s’ Iy
dist (£ (TFa), 50 IFea) ) ) ®)

where dist(X,Y") denotes the cosine distance between X and Y

in the embedding space. fth) denotes the embedding text feature
by employing a fully-connected on 7', in the common space,
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TABLE I
ABLATION STUDY OF MARGIN, BIDIRECTIONAL RETRIEVAL RESULTS ON FLICKR30 K 1000-IMAGE TEST SET

. itmage — to — sentence sentence — to — image
Flickr30K | —pa1 Ras  Ralo | Rel  Ras  Raio | UM
mg=0.1 50.7 79.6 86.3 38.4 67.6 77.9 400.5
mg=0.2 55.7 82.6 89.2 42.5 72.1 80.7 422.8
mg=0.3 53.9 80.6 87.4 40.9 71.2 80.3 414.3
mg=0.6 50.8 717.6 85.0 38.0 70.0 79.0 400.9

and f‘(/él) denotes the embedding image feature by employing a
fully-connected on /.. The margin of the triplet is mg.

IV. EXPERIMENT RESULTS
A. Datasets and Evaluation Metrics

To evaluate the effectiveness of proposed approach, we con-
duct extensive experiments on two popular publicly available
datasets, Flickr30K [44] and MS COCO [45].

MS COCO: We use the MS COCO caption dataset which
is used by many papers [3]-[5], [21] for cross-modal retrieval.
We adopt the same splits as reported in [21], which contains
113,287 training images with each five captions, 5,000 images
for validation and 5,000 images for testing.

Flickr30 K: This dataset consists of 31,783 images, and each
image is accompanied by five descriptive sentences. Following
the same protocols as the recent works [3], [4], [21], we ran-
domly split it into a training set with 29,783 images, and use
1000 images for validation and 1000 images for testing.

Evaluation Metrics: In our experiments, we consider both
T2I and 12T tasks. We report the performance at Recall @K (K
=1, 5, 10), which is the percentage of queries that at least one
correct result is ranked among the top K of the ranked list. We
also evaluate another indicator SU M:

SUM = RQ1 + R@5 + RQ10+ RQ1 + RQ5 4+ RQ10

sentence—to—image

€))

image—to—sentence

queries returned true results at top K

RQK =

. (10)
all queries

B. Implementation Details

RIR: We adopt the Resnet152 network [46] pre-trained on
ImageNet [47] as the backbone of deep image representation.
We first resize the image to 256 x 256, and then use random crop
of size 224 x 224 for training and center crop of size 224 x 224
for testing. We use kernel 7 x 7 pooling for Resnet C4, kernel
14 x 14 pooling for Resnet C3, kernel 28 x 28 for Resnet
C2 and kernel 56 x 56 for Resnet C1 to encode low-level and
high-level feature map, respectively. Finally, we concatenate the
local feature vectors by max-pooling and global feature vector
by average-pooling.

RTR: We use word embeddings initiated by uniform distri-
bution between -0.1 and 0.1 and one-layer biGRU for deep text
representation. The dimensionality of the word embeddings is
300, and the hidden size of biGRU is 1024. We only exploit con-
text representation by summing the forward final hidden state

and backward final hidden state of BiGRU and low-level rep-
resentation vector by average-pooling on word-embedding fea-
ture matrix. We concatenate context representation and low-level
representation to obtain the final text feature.

We take a mini-batch size of 128 pairs and train the model for
36 epochs. The initial learning rate is set to 0.0002 and decreased
by a factor of 10 after 15 epochs for Flickr30 K and a factor of
1.2 after 15 epochs for MS COCO. The margin of the triplet
loss is set to 0.2, which is motivated by [21]. From Table I, we
can obtain the best performance by setting the parameter mg as
0.2. To learn the image-text embeddings in common space, we
add the fully connected layer after the text and image represen-
tation, respectively. The dimension of the space is set to 1024.
Our experiments use the VSE++ [21] code and reranking [48]
code, which is implemented based on the publicly available Py-
torch [49] deep learning framework. All of our experiments are
run on NVIDIA TITAN X PASCAL GPUs.

C. Comparisons With State-of-the-Art Methods

We make extensive comparisons with state-of-the-art cross-
modal retrieval approaches on MS COCO in Table II and Ta-
ble III, and Flickr30 K datasets in Table IV.

Cross-modal Retrieval on MS COCO: Experiment results
for 1000-image test set on MS COCO dataset are shown in
Table II. From the results, we can observe that our proposed
method outperforms all the other state-of-the-art works, in-
cluding Skip-thought [50], DVSA [51], Fisher Vector [52],
m-RNN [53], MNLM [54], m-CNN [55], OEM [56], VQA [1],
DSPE [57], sm-LSTM [22], 2WayNet [19], RRF [58],
2Branch [43], VSE++ [21], DPC [3], CHAIN-VSE [23],
GXN [5], SCO [4] and CMPM [59]. In particular, SCO achieves
the second best performance among the baselines. Even SCO
is trained with extra dataset that keeps the nouns, adjectives,
verbs and numbers as semantic concepts and eliminate all the
semantic-irrelevant words from the sentences. GXN exploits
four-path network to learn feature in common space, which
achieves the third best performance. As a result, it needs lots of
GPU memory when training and testing, and it is hard to train by
end-to-end manner. In contrast, the proposed RFE method is very
simple and convenient to learn cross-modal feature embeddings.
RFE is also effective and efficient for training the cross-modal
retrieval network. Compared with those state-of-the-art meth-
ods, the proposed RFE improves upon the best performance by
over 11.3% for SUM. In addition, we can see that our RFE
outperforms prior methods by a relatively large margin at all
recall metrics, such as Recall@1, Recall@5 and Recall@ 10 for
image-to-text and text-to-image retrieval.
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TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS, BIDIRECTIONAL RETRIEVAL RESULTS ON MS COCO 1000-IMAGE TEST SET

MS COCO ‘

image — to — sentence

sentence — to — image ‘

| R@1 RQ@5 RQI0 [ R@I R@5 RQ10 | SUM
Skip-thought [NIPS2015] [50] 33.8 67.7 82.1 259 60.0 74.6 344.1
DVSA [CVPR2015] [51] 384 69.9 80.5 274 60.2 74.8 351.2
Fisher Vector [CVPR2015] [52] 39.4 67.9 80.9 25.1 59.8 76.6 349.7
m-RNN [ICLR2015] [53] 40.8 71.9 83.2 29.6 64.8 80.5 371.6
MNLM [ICML2014] [54] 434 75.7 85.8 31.0 66.7 79.9 382.5
m-CNN [ICCV2015] [55] 42.8 73.1 84.1 32.6 68.6 82.8 384.0
OEM [ICLR2016] [56] 46.7 78.6 88.9 37.9 73.7 85.9 411.7
VQA [ECCV2016] [1] 50.5 80.1 89.7 37.0 70.9 82.9 411.1
DSPE [CVPR2016] [57] 50.1 79.7 89.2 39.6 75.2 86.9 420.7
sm-LSTM [CVPR2017] [22] 53.2 83.1 91.5 40.7 75.8 87.4 431.7
2WayNet [CVPR2017] [19] 55.8 75.2 - 39.7 63.3 - -
RRF [ICCV2017] [58] 56.4 85.3 91.5 43.9 78.1 88.6 443.8
2Branch [TPAMI2018] [43] 54.9 84.0 92.2 433 76.4 87.5 438.3
VSE++ [BMVC2018] [21] 64.6 - 95.7 52.0 - 92.0 -
DPC [3] 65.6 89.8 95.5 47.1 79.9 90.0 467.9
CHAIN-VSE [CVPR20138] [23] 61.2 89.3 95.8 46.6 81.9 90.9 465.7
GXN [CVPR2018] [5] 68.5 - 97.9 56.6 - 94.5 -
SCO [CVPR2018] [4] 69.9 929 97.5 56.7 87.5 94.8 499.3
CMPM [ECCV2018] [59] 56.1 86.3 92.9 44.6 78.8 89.0 447.7
RFE-ensemble [ours] 74.4 95.0 98.2 59.2 88.8 95.0 510.6
SCAN t-i LSE [ECCV2018] [24] 67.5 92.9 97.6 53.0 85.4 92.9 489.3
SCAN t-i AVG [ECCV20138] [24] 70.9 94.5 97.8 56.4 87.0 93.9 500.5
SCAN i-t LSE [ECCV2018] [24] 68.4 93.9 98.0 54.8 86.1 93.3 494.5
SCAN i-t AVG [ECCV2018] [24] 69.2 93.2 97.5 54.4 86.0 93.6 493.9
SCAN t-i LSE + i-t AVG [ECCV2018] [24] 72.7 94.8 98.4 58.8 88.4 94.8 507.9
SCAN-RFE t-i LSE [ours] 71.9 94.2 97.9 56.7 86.9 93.8 501.4
SCAN-RFE t-i AVG [ours] 74.8 95.3 98.2 59.6 88.0 94.3 510.2
SCAN-RFE i-t LSE [ours] 70.9 94.4 97.9 56.3 86.8 93.6 499.9
SCAN-RFE i-t AVG [ours] 69.4 93.5 97.5 53.0 84.9 92.4 490.7
SCAN-RFE t-i AVG + i-t LSE [ours] 75.6 95.3 98.6 60.9 89.2 95.1 514.7
SCAN-RFE t-i AVG + t-i LSE [ours] 76.1 95.4 98.4 61.1 88.9 95.1 515.3

TABLE III

COMPARISON WITH STATE-OF-THE-ART METHODS, BIDIRECTIONAL RETRIEVAL RESULTS ON MS COCO 5000-IMAGE TEST SET

[ image —to — sentence |

sentence — to — image ‘

MS COCO [ Rei Res Rei0 | Rei Raes Reio | UM
VQA [ECCV2016] [1] 235 507 56 T6.7 205 53.8 2488
DSPE [CVPR2016] [57] 24.0 50.8 65.1 174 427 56.7 256.7
OEM [ICLR2016] [56] 233 - 65.0 180 - 576 -
VSE++ [BMVC2018] [21] 413 - 81.2 30.3 - 72.4 -
DPC [3] 412 705 81.1 253 534 66.4 337.9
GXN [CVPR2018] [5] 420 R 84.7 317 R 74.6 -
SCO [CVPR2018] [4] 03 73 83.0 33,1 62.9 75.5 360.5
CMPM [ECCV2018] [59] 311 607 739 229 502 63.8 302.6
RFE-ensemble [ours] a8 7.2 86.4 349  65.0 76.8 388.1
SCAN it LSE [ECCV2018] [24] 364 774 872 344 637 757 38438
SCAN ti AVG + i-t LSE [ECCV2018] [24] | 50.4 822 90.0 38.6 69.3 80.4 4109
SCAN-RFE ti AVG [ours] 524 81.1 90.0 38.1 674 7801 407.1
SCAN-RFE t-i LSE [ours] 131 780 88.1 343 64.1 76.0 388.6
SCAN-RFE i-t LSE [ours] 472 777 87.9 34.0 63.8 75.5 3861
SCAN-RFE ti AVG + i-t LSE [ours] 546 825 90.6 39.9 69.1 79.9 4166
SCAN-RFE t-i AVG + t-i LSE [ours] 55.1 82.7 91.0 39.7 68.9 79.7 417.1

In order to verify the robustness of our method on MS COCO
dataset, we also test the 5000-image test set and present the
comparison results in Tabel III. Compared to the 1000 test data,
the 5000 test data is more challenging for improving perfor-
mance. Therefore, only a few works conduct experiments on the
5000 test data. From the Table III, we can notice that SCO still
achieves the second best performance among all state-of-the-art
approaches. RFE-ensemble obtains 47.8% in Recall@1, 77.2%
in Recall@5 and 86.4% in Recall@10 for image-to-sentence
retrieval task, which outperforms the SCO more than 5.0%,
4.9% and 3.4%, respectively. Besides, RFE-ensemble gains a
new baseline for sentence-to-image retrieval task with 34.9%
in Recall@1, 65.0% in Recall@5 and 76.8% in Recall@10.

It is worth mentioning that RFE-ensemble lead to 388.1% for
SUM, which acquires significant improvements over the other
approaches more than 18.6%.

In order to further verify the effectiveness of our method, we
have done experiments on features with rich semantic informa-
tion [24]. we exploit both global text representation and local
text representation with same visual feature from SCAN. Con-
cretely, we concatenate word embedding vector and word fea-
ture from BiGRU while the rest of SCAN remains unchanged.
From Table II, we can see that the Recall@1 score is improved
from 72.7% to 76.1% for image-to-sentence retrieval and 58.8%
to 61.1% for text-to-image retrieval. In addition, SCAN-RFE
achieves 55.1% and 39.7% at Recall@1 for image-to-sentence
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TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS, BIDIRECTIONAL RETRIEVAL RESULTS ON FLICKR30 K 1000-IMAGE TEST SET

. tmage — to — sentence sentence — to — image
Flickr30K Ral R@s Ral0 | Rei  Ras Raw | VM
DVSA [CVPR2015] [51] 222 48.2 61.4 15.2 37.7 50.5 235.2
Fisher Vector [CVPR2015] [52] 35.0 62.0 73.8 25.0 52.7 66.0 314.5
m-RNN [ICLR2015] [53] 32.7 62.7 72.6 26.2 55.1 69.2 318.5
MNLM [ICML2014] [54] 23.0 50.7 62.9 16.8 42.0 56.5 251.9
m-CNN [ICCV2015] [55] 33.6 64.1 74.9 26.2 56.3 69.6 324.7
VQA [ECCV2016] [1] 339 62.5 74.5 24.9 52.6 64.8 313.2
RTP [ICCV2015] [44] 37.4 63.1 74.3 26.0 56.0 69.3 326.1
DSPE [CVPR2016] [57] 40.3 68.9 79.9 29.7 60.1 72.1 351.0
sm-LSTM [CVPR2017] [22] 42.5 71.9 81.5 30.2 60.4 72.3 358.8
2WayNet [CVPR2017] [19] 49.8 67.5 - 36.0 55.6 - -
RRF [ICCV2017] [58] 47.6 77.4 87.1 354 68.3 79.9 395.7
DAN [CVPR2017] [2] 55.0 81.8 89.0 39.4 69.2 79.1 413.5
2Branch [TPAMI2018] [43] 43.2 71.6 79.8 31.7 61.3 72.4 360.0
VSE++ [BMVC2018] [21] 52.9 - 87.2 39.6 - 79.5 -
DPC [3] 55.6 81.9 89.5 39.1 69.2 80.9 416.2
SCO [CVPR2018] [4] 55.5 82.0 89.3 41.1 70.5 80.1 418.5
CMPM [ECCV2018] [59] 49.6 76.8 86.1 37.3 65.7 75.5 391.0
RFE [ours] 56.1 82.7 89.4 42.5 72.3 80.9 423.9
SCAN t-1 LSE [ECCV2018] [24] 61.6 85.4 91.5 433 71.9 80.9 434.6
SCAN t-i AVG [ECCV2018] [24] 61.8 87.5 93.7 45.8 74.4 83.0 446.2
SCAN i-t LSE [ECCV2018] [24] 67.7 88.9 94.0 44.0 74.2 82.6 451.4
SCAN i-t AVG [ECCV2018] [24] 67.9 89.0 94.4 439 74.2 82.8 452.2
SCAN t-i AVG + i-t LSE [ECCV2018] [24] 67.4 90.3 95.8 48.6 77.7 85.2 465.0
SCAN-RFE t-i LSE [ours] 66.4 90.6 95.6 49.8 77.9 85.9 466.2
SCAN-RFE t-i AVG [ours] 66.7 91.9 96.0 50.9 77.7 85.1 468.3
SCAN-RFE i-t LSE [ours] 68.7 91.5 95.9 48.2 77.1 84.9 466.3
SCAN-RFE i-t AVG |[ours] 67.3 89.5 94.4 443 73.8 82.8 452.1
SCAN-RFE t-i AVG + i-t LSE [ours] 72.2 93.8 97.2 53.3 80.3 87.3 484.1

and sentence-to-image retrieval on MS COCO 5000-image test
set in Table III, which outperform SCAN more than 4.7% and
1.1%, respectively.

Cross-modal Retrieval on Flickr30 K: We report results on
another small dataset Flickr30 K for cross-modal retrieval to
validate the performance of our approach in Table IV. From the
Table IV, SCO also achieves the second best performance and
DPC achieves the third best performance that exploits dual-path
Resnet-50 network to learn image-text Embedding. However,
the Resnet-50 network costs heavier GPU memory than the
GRU in our approach for deep text representation. We can ob-
serve that our method achieves similar performance with the
method of DPC in Recall@ 10 for both image-to-sentence and
sentence-to-image retrieval tasks. Nevertheless, we yield results
56.1% in recall@1, 82.7% in recall@5, 42.5% in recall@1 and
72.3% inrecall @5 for image-to-sentence and sentence-to-image
retrieval tasks, which outperforms large margin when compared
with the methods of both DPC and SCO. In general, recall@1 is
better than recall@ 10 in evaluating the effectiveness of a method
in real-world scenarios. Furthermore, the proposed simple and
effective RFE improves upon the best performance SCO by over
5.4% for summing all Recall metric.

We also report results on Flickr30 K based on rich semantic
feature of SCAN for cross-modal retrieval to validate the effec-
tiveness of our approach in Table I'V. It can be observed that our
SCAN-RFE achieves the state-of-the-art results in the respect
of all the evaluation metrics. In particular, SCAN-RFE achieves
72.2% and 53.3% in R@]1 for image-to-text and text-to-image
tasks, which outperforms SCAN more than 4.8% and 4.7%,
respectively.

Kids in the kitchen
being served some

food by their mom.

A man in a uniform
is using a mobile

device.

An interior shot of
a living area with
wooden accent

modern decor.

Query caption

Retrieval image

Fig. 4. Qualitative text-to-image retrieval examples. For each text query,
we show the top-3 ranked images. The ground-truth matching images aren’t
surrounded by red box.

Both experimental results on MS COCO and Flickr30 K
datasets well demonstrate the superiority of our approach. Fig. 4
and Fig. 5 show some successful retrieval results on MS COCO
datasets by VSE++-RFE, indicating that our methods can learn
discriminative feature representation in common space for cross-
modal bi-directional retrieval tasks. It can be observed that
our approach can obtain the reasonable results for image-text
matching.

At Table V, we report the time of training and 1 K testing on
val set at Tab 1 based on NVIDIA TITAN X PASCAL GPUs,
respectively. Both the training phase and the testing phase are
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TABLE V
COMPARISION WITH THE STATE-OF-THE-ART ON TRAINING AND TESTING EFFICIENCY

[ TIME [ Train/AVG(s) Train/SD Test/AVG(s) Test/SD ]
VSE++ 0.847 0.055 63.69 2.031
VSE++-RFE 0.867 0.063 66.9 1.665
SCAN 0.95 0.017 292.23 5.186
SCAN-RFE 1.028 0.049 402.39 5.805

1. Two giraffes stroll past each other near a bush.

2. Two giraffes crossing paths on a green and grassy field.
3.Two giraffes standing near trees in a grassy area.

4. Two giraffe standing next to each other on a grassy field.

5. Two giraffes rub their necks together as they stand by the trees in the sunlight.

1. A toilet sitting in a bathroom next to a sink.
2. Atoilet in a bathroom with green faded paint.
3. A bathroom with a gouged wall and wall socket with no panel.

4. The toilet is near the door in the bathroom.

5. The bathroom wall needs to be resurfaced and painted.

1. A yellow and blue fire hydrant sitting on a sidewalk.

2. Ayellow and blue fire hydrant on the sidewalk.

3. Afire hydrant that is painted yellow and blue.

4. A brightly colored fire hydrant sits beside a brightly colored curb.

5. Ayellow fire hydrant is on a brick sidewalk.

Retrieval caption

Query image

Fig. 5. Qualitative image-to-text retrieval examples. For each image query,
we show the top-5 ranked texts. The ground-truth matching texts are in black.

executed for 10 runs, of which each run in the training phase
consists of 10 iterations. AVG and SD indicate the average time
and the standard deviation of 10 runs, respectively. The testing
run time and every training iteration time of SCAN and SCAN-
RFE are the average time of four approaches that are #-i LSE,
t-i AVG, i-t LSE and i-t AVG. As can be seen from the table, our
method costs more time than the base model. In addition, the
deeper the network structure of base model, the less complexity
our approach will increase.

D. Ablation Analysis

We conduct extensive ablation analysis of the proposed RFE
to validate the effectiveness of each key module and generate
the following baselines including:

VSE++: encoding image by average-pooling Resnet-C4 and
text by exploiting context feature of GRU.

avg-4-GRU-emb-avg: encoding image by average-pooling
Resnet-C4 and text by concatenating context feature of GRU
and average-pooling word-embedding feature.

avg-4-BiGRU: encoding image by average-pooling Resnet-
C4 and text by summing forward and backward context feature.

avg-4-BiGRU-emb-max: encoding image by average-
pooling Resnet-C4 and text by concatenating context repre-
sentation from summing forward and backward context and
max-pooling word-embedding feature.

avg-4-BiGRU-emb-avg: encoding image by average-pooling
Resnet-C4 and text by concatenating context representation
from summing forward and backward context and average-
pooling word-embedding feature.

avg-4-max-4-BiGRU-emb-avg: encoding image by concate-
nating max-pooling Resnet-C4 and average-pooling Resnet-C4
and encoding text by concatenating context representation from
summing forward and backward context and average-pooling
word-embedding feature.

avg-4-max-123-BiGRU-emb-avg: encoding image by con-
catenating max-pooling Resnet-C1, max-pooling Resnet-C2,
max-pooling Resnet-C3 and average-pooling Resnet-C4, and
encoding text by concatenating context representation from
summing forward and backward context and average-pooling
word-embedding feature.

avg-4-max-34-BiGRU-emb-avg: encoding image by con-
catenating max-pooling Resnet-C3, max-pooling Resnet-C4 and
average-pooling Resnet-C4, and encoding text by concatenat-
ing context representation from summing forward and backward
context and average-pooling word-embedding feature.

avg-1234-BiGRU-emb-avg: encoding image by concate-
nating max-pooling Resnet-C1, max-pooling Resnet-C2,
max-pooling Resnet-C3 and max-pooling Resnet-C4, and
encoding text by concatenating context representation from
summing forward and backward context and average-pooling
word-embedding feature.

avg-1234-max-1234-BiGRU-emb-avg: encoding image
by concatenating max-pooling Resnet-C1, max-pooling
Resnet-C2, max-pooling Resnet-C3, max-pooling Resnet-C4,
average-pooling Resnet-C1, average-pooling Resnet-C2,
average-pooling Resnet-C3 and average-pooling Resnet-C4,
and encoding text by concatenating context representation from
summing forward and backward context and average-pooling
word-embedding feature.

avg-4-max-1234-BiGRU-emb-avg: encoding image by con-
catenating max-pooling Resnet-C1, max-pooling Resnet-C2,
max-pooling Resnet-C3, max-pooling Resnet-C4 and average-
pooling Resnet-C4, and encoding text by concatenating context
representation from summing forward and backward context and
average-pooling word-embedding feature.

model-rerank: reranking the retrieval results from the model
by exploiting test data when testing.

RFE-ensemble: ensemble with the four models from avg-4-
max-4-BiGRU-emb-avg, avg-4-max-123-BiGRU-emb-avg, avg-
4-max-34-BiGRU-emb-avg and avg-4-max-1234-BiGRU-emb-
avg.

SCAN-RFE: concatenating word embedding vector and word
feature from BiGRU while the rest of SCAN remains unchanged.

SCAN-RFE A + B: ensemble with the two models from
SCAN-RFE A and SCAN-RFE B.

1) RTR: With the RTR approach, we aim to learn discrim-
inative text feature for bi-directional image-sentence match-
ing tasks. The main motivation of RTR is to learn both low-
level word-embedding feature and high-level context feature of
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TABLE VI
ABLATION STUDY OF RICH FEATURE EMBEDDING, BIDIRECTIONAL RETRIEVAL RESULTS ON MS COCO 1000-IMAGE TEST SET

tmage — to — sentence sentence — to — image
MS coco RQ@1 RQ@5 R@10 RQ@1 RQ@5 R@10 SUM
VSE++ [BMVC2018] 64.6 - 95.7 52.0 - 92.0 -
avg-4-GRU-emb-avg 69.9 93.0 96.9 56.5 87.0 93.7 497.0
avg-4-BiGRU 67.4 93.7 97.7 55.6 86.8 93.8 495.0
avg-4-BiGRU-emb-max 68.9 93.7 97.6 56.3 87.0 93.5 497.0
avg-4-BiGRU-emb-avg 70.0 93.3 97.7 55.7 87.7 93.7 498.1
avg-1234-BiGRU-emb-avg 70.8 93.4 97.5 56.7 87.7 93.8 499.9
avg-1234-max-1234-BiGRU-emb-avg 71.3 94.1 97.7 57.0 87.1 93.9 501.1
avg-4-max-4-BiGRU-emb-avg 70.9 94.2 97.6 57.1 87.3 94.1 501.2
RFE-ensemble 74.4 95.0 98.2 59.2 88.8 95.0 510.6
TABLE VII

ABLATION STUDY OF RICH FEATURE EMBEDDING, BIDIRECTIONAL RETRIEVAL RESULTS ON MS COCO 5000-IMAGE TEST SET

tmage — to — sentence sentence — to — tmage
MS COCO Rol RG5 Relo | Rel  Raes  Raio | UM
VSE++ [BMVC2018] [21] 41.3 - 81.2 30.3 - 72.4 -
avg-4-BiGRU-emb-avg-5K 43.6 73.5 83.8 323 62.5 74.5 370.2
avg-4-max-4-BiGRU-emb-avg-5K 44.1 74.6 84.5 32.6 62.8 75.0 373.6
avg-4-max-123-BiGRU-emb-avg-5K 42.5 73.2 83.8 322 62.3 74.5 368.5
avg-4-max-34-BiGRU-emb-avg-5K 44.2 74.3 84.6 32.9 62.7 74.6 373.3
avg-4-max-1234-BiGRU-emb-avg-5K 44.8 75.0 84.8 329 62.9 74.9 375.2
RFE-ensemble 47.8 77.2 86.4 34.9 65.0 76.8 388.1
TABLE VIII

ABLATION STUDY OF RICH FEATURE EMBEDDING, BIDIRECTIONAL RETRIEVAL RESULTS ON FLICKR30 K 1000-IMAGE TEST SET

. 1mage — to — sentence sentence — to — image
Flickr30K R@l Ra@5 Ra@l0 | Rel Ra@s  Raio | UM
VSE++ [BMVC2018] [21] 52.9 - 87.2 39.6 - 79.5 -
avg-4-GRU-emb-avg 55.7 82.6 89.2 42.5 72.1 80.7 422.8

biGRU when representing the sentence. In order to convert
word-embedding output matrix to a vector, we employ the pop-
ular operation average pooling and max pooling, respectively.
In addition, we exploit the biGRU to learn backward and for-
ward context feature for enhancing text representation, which is
different from the vanilla sequence-learning model with GRU.
After obtaining the word-embedding vector representation and
context representation from biGRU, we concatenate them for
final text representation.

For quantitatively understanding the contribution of final text
representation by RTR, we demenstrate the comparison results
in Table VI for 1000-image test set on MS COCO dataset and
in Table VIII for 1000-image test set on Flickr30 K dataset,
respectively.

We can observe that the performance can be improved from
64.6% t069.9% at Recall @ 1 for image-to-sentence retrieval task
and from 52.0% to 56.5% at Recall@1 for sentence-to-image
retrieval task by employ average-pooling on word-embedding
feature in Table VI, which is a large margin for cross-modal
retrieval. Besides, the performance can be also promoted at Re-
call@ 10 for bi-directional retrieval. From Table VIII, we can ob-
serve the image-to-sentence retrieval and sentence-to-image re-
trieval yield results 55.7%/42.5% at Recall@ 1 and 89.2%/80.7%
at Recall@10 by exploiting low-level word-embedding feature.
Comparison with the baselines results, the proposed low-level
representation approach significantly improve the performance.
The above results denote that the utilize of local information

from word-embedding feature can really learn a better text rep-
resentation when training the image-sentence matching system.

A major issue with GRU is that it learns representation from
previous time steps. Sometimes, we might have to learn repre-
sentation from future time steps to better understand the context
and eliminate ambiguity. So, we employ the bidirectional GRU
to extract the context feature of the sentence. We can see that
Recall@1 score is improved from 64.6% to 67.4% for image-to-
sentence retrieval and 52.0% to 55.6% for sentence-to-image re-
trieval from Table VI. Moreover, Recall@ 10 score is promoted
when exploiting both forward and backward information for
context representation, too. But, the approach of biGRU con-
text representation doesn’t work well. We think that flickr30 K
dataset has fewer data and biGRU has more learning parameters
than unidirectional GRU, so it can not learn better representation
on small dataset.

Finally, we integrate context feature of biGRU and low-level
word-embedding feature to obtain text representation. The per-
formance shown by avg-4-BiGRU-emb-avg get improved com-
pared with both avg-4-GRU-emb-avg and avg-4-BiGRU, which
indicate developing the low-level and high-level text represen-
tation is applicable for cross-modal retrieval. Furthermore, we
adopt max-pooling on word-embedding feature to gain low-level
feature for text representation. It can improve the performance of
baseline, but the performance is not as good as average-pooling
operation. Therefore, biGRU and average-pooling operation is
eventually used for sentence representation in our framework.
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TABLE IX

ABLATION STUDY OF RERANKING, BIDIRECTIONAL RETRIEVAL RESULTS ON MS COCO 1000-IMAGE TEST SET

tmage — to — sentence sentence — to — image
MScoco R@l _R@s Ra@i0 | Rel Ras Raio | UM
avg-4-max-1234-BiGRU-emb-avg 71.7 93.6 97.2 57.0 87.9 94.4 501.8
avg-4-max-1234-BiGRU-emb-avg-rerank 72.8 93.5 97.2 57.5 87.8 94.4 503.2
TABLE X
ABLATION STUDY OF RERANKING, BIDIRECTIONAL RETRIEVAL RESULTS ON FLICKR30 K 1000-IMAGE TEST SET
. tmage — to — sentence sentence — to — image
Flickr30K rR@l RG@5 R@i0 | Rei _Ra@s  Raio | UM
avg-4-GRU-emb-avg 55.7 82.6 89.2 42.5 72.1 80.7 422.8
avg-4-GRU-emb-avg-rerank 56.1 82.7 89.4 42.5 72.3 80.9 423.9
VSE++ RFE RFE-reranking RFE-ensemble
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1. A colorful double decker bus
doing down the road beside a
semi.

2. A blue train is coming down
the tracks.

3. A blue double decker bus is
driving down the street.

4. Two large trucks are parked

between some lines on a street.

5. A double decker bus that is
driving on the road.

1. a large campaign trailer
parked in a parking lot.

2. A blue train is coming down
the tracks.

3. A group of cars next to a
train.

4. A blue and yellow train a
building and some cars.

5. Train engine passing an
outside station platform, in
California.

1. A blue train is coming down
the tracks.

2. a large campaign trailer
parked in a parking lot.

3. agroup of cars next to a
train.

4. a blue and yellow train a
building and some cars.

5. Train engine passing an
outside station platform, in
California.

1. A blue train is coming
down the tracks.

2. a blue and yellow train a
building and some cars.

3. A train coming down the
tracks near some houses.
4. A photo of a train station
with the train pulling in.

5. Train engine passing an
outside station platform, in
California.

1. A cutting board with slices of
fruit on top of it.

2. Wo slices of pepperoni and
cheese pizza with crushed red
pepper flakes.

3. Two slices of pepperoni pizza
with a jar of red pepper and a
red glass with a straw.

4. A small vanilla birthday cake
topped with strawberries.

5. Two slices of pepperoni pizza
with a jar of red pepper and a
red glass with a straw.

1. A cutting board with slices of
fruit on top of it..

2. Wo slices of pepperoni and
cheese pizza with crushed red
pepper flakes.

3. Two slices of pepperoni pizza
with a jar of red pepper and a
red glass with a straw.

4. Three pieces of sliced pizza
on a wooden surface.

5. Three slices of pizza sitting
on top of a wooden cutting
board.

1. A cutting board with slices
of fruit on top of it..

2. Wo slices of pepperoni and
cheese pizza with crushed red
pepper flakes.

3. Three pieces of sliced pizza
on a wooden surface.

4. Two slices of pepperoni
pizza with a jar of red pepper
and a red glass with a straw.
5. Three slices of pizza sitting
on top of a wooden cutting
board.

1. A cutting board with slices
of fruit on top of it.

2. Wo slices of pepperoni and
cheese pizza with crushed red
pepper flakes. .

3. Three pieces of sliced pizza
on a wooden surface.

4. Three slices of pizza sitting
on top of a wooden cutting
board.

5. A small vanilla birthday
cake topped with
strawberries.

Query image

Fig. 6.

Retrieval caption

Examples of image-text retrieval for ablation analysis. RFE denotes the model avg-4-max-1234-BiGRU-emb-avg. RFE-reranking is the model avg-4-max-

1234-BiGRU-emb-avg-rerank. The ground-truth matching texts are in black. We observe that the proposed approach the improve the performance of the baselines
model. In particular, it still works well even if the baselines model cannot search the true texts at the top-5 results.

2) RIR: We now proceed to evaluate the method of encod-
ing image by RIR for learning cross-modal feature embedding.
In this paper, we aim to learn the image feature that conveys
both local and global information of the image, which can
be obtained by max-pooling and average-pooling on Resnet
blob, respectively. To compare with the baseline model, we
handle max-pooling on Resnet-C1, Resnet-C2, Resnet-C3, and
Resnet-C4 to extract local image feature. We present the ablation
results on 1000-image test set in Table VI and on 5000-image test
set in Table VII for MS COCO dataset. We select four kinds of
ways to encode image local feature to validate the proposed RIR,
for instance, avg-4-max-4-BiGRU-emb-avg, avg-4-E-max-123-
BiGRU-emb-avg, avg-4-E-max-34-BiGRU-emb-avg and avg-4-
max-1234-BiGRU-emb-avg. We can see that the performance
of both average pooling and max pooling avg-4-BiGRU-emb-
avg on the last layer of Resnet is improved from 70%/55.7%
to 70.9%/57.1% at recall 1 for cross-modal retrieval when
comparison with only handling average pooling operation on

the last layer avg-4-max-4-BiGRU-emb-avg. Furthermore, over-
all performance SUM is improved by 3.1%. It shows that we can
get some local information by max pooling on the last layer,
which can complement the global information by average pool-
ing. The performance is improved from 70% to 71.7% at recall 1
for image-to-sentence retrieval for four convolution layers with
max pooling and the last layer with average pooling avg-4-max-
1234-BiGRU-emb-avg compared with avg-4-BiGRU-emb-avg.
Specially, the performance is improved by 3.7% for SUM met-
ric. We think that there are different local characteristics for
four convolutional layers, which can complement each other
and global semantic information from texture level to semantic
level. Therefore, we yield the best local features by fusing all four
convolutional layers based on ablation study. We find that the en-
riched features are more helpful to retrieve complex images and
long captions by visualize the magnitude of word-embedding
vectors and the number of the image objects. In addition, we
can observe that all the four models have better performance
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than the baseline model avg-4-GRU-emb-avg in Table VI In ad-
dition, we find that it cannot drive up performance by concate-
nation the features from max-pooling on the first three Resnet
blobs and average-pooling on Resnet C4 in Table VII. We hold
the view that only max-pooling on Resnet C1, Resnet C2 and
Resnet C3 ignores the semantic information in CNN. Anyway,
we find out it is the best choice for image representation to con-
catenate four Resnet blob feature by max-pooling operation and
average-pooling on Resnet C4 for MS COCO. Due to the limita-
tion of data volume, RIR cannot work very well on Flickr30 K.

3) Re-Ranking and Ensemble: In order to further enhance
the performance of cross-modal retrieval, we adopt two post-
processing operations that is reranking [48] and ensemble. For
a sentence (image) on test datasets, k-reciprocal feature is cal-
culated by encoding its k-reciprocal nearest neighbors of image
(sentence) on test datasets into a single vector, which is used
for reranking inspired by [48] under the Jaccard distance. From
the Table IX, we can know that the performance of the best sin-
gle model avg-4-max-1234-BiGRU-emb-avg is improved from
501.8% to 503.2% after reranking the results at SUM. We also
demonstrate the effectiveness on Flickr30 K shown on Table X.
It’s remarkable that the reranking method does not require train-
ing and can be directly used for testing, which is very practical
for image-sentence matching owing to heavy time consuming
when training. As we all know, it is the first time for reranking
on cross-modal retrieval task in both MS COCO and Flickr30 K
datasets.

As for ensemble, we combine features of the four different
models in common space to obtain the image representation
and text representation. From the Table II and Table VII, we
can notice that the proposed ensemble method goes beyond the
basic model on all the evaluation indicators, which validates
the effectiveness of the proposed ensemble approach. Examples
of cross-modal retrieval are shown in Fig. 6 for each compo-
nent, which demonstrates the improvement when compared with
baseline model.

V. CONCLUSION

We introduce a simple approach, i.e. RFE, to learn rich fea-
tures embedding by mining the local and global information
for both image and sentence. The RFE approach is effective to
learn discriminative deep image and text feature for cross-modal
retrieval. We achieve new state-of-the-art performance on the
popular datasets for image-sentence matching task. This work
paves a simple yet effective way to learn deep representation in
embedding space for heterogeneous data, which makes a great
contribution to the multi-modal learning community. In the fu-
ture, we plan to develop more effective strategies for fusing the
local and global feature, such as concatenating the key element
by prototype selection. Moreover, we will develop object-level
global and local feature by region proposal network, and fuse it
with image-level global and local feature that is proposed in this

paper.
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